ADC Differential Nonlinearity

Analog-to-Digital Converter (ADC) Differential Non-Linearity (DNL) is defined as the maximum and minimum difference in the step width between the actual transfer function and the perfect transfer function. Non-linearity produces quantization steps with varying widths, some narrower and some wider.

Positive & Negative DNL

For the case of the ideal ADC, the step width should be 1 LSB. The step widths of a non-ideal (Actual) ADC with DNL are not exactly 1 LSB. In the figure below, in a maximum case, the width of the step with output value 101 is 1.5 LSB which should be ideally 1 LSB. The DNL in this case would be +0.5 LSB. Whereas in a minimum case, the width of the step with output value 001 is only 0.5 LSB which is 0.5 LSB less than the expected width. So the DNL now would be ±0.5 LSB.


ADC Missing Code

There are some special cases wherein the actual transfer function of the ADC would look as in the figure below (3-bit ADC). The first code transition (from 000 to 001) is caused by an input change of 250 mV. This is exactly as it should be. The second transition, from 001 to 010, has an input change that is 1.25 LSB, which is increased by 0.25 LSB. The input change for the third transition is exactly the right size. The digital output remains constant when the input voltage changes from 1000 mV to 1500 mV and the code 100 can never appear at the output: it is missing. The higher the resolution of the ADC is, of the less the severity of the missing code is. An ADC with DNL error less than ±1 LSB guarantees no missing code.


20th Annual
Microchip MASTERs Conference 2016
Register now - Deadline: July 29

JW Marriott Desert Ridge Resort-Phoenix, AZ

© 2016 Microchip Technology, Inc.
Information contained on this site regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.