Microchip Supported Motor Types

Microchip's PIC® MCUs and dsPIC® Digital Signal Controllers (DSCs) are capable of optimizing the control performance of six types of motors:

  1. Brushed DC
  2. Stepper
  3. Brushless DC (BLDC)
  4. Permanent Magnet Synchronous Motor (PMSM)
  5. AC Induction Motor (ACIM)
  6. Switched Reluctance (SR)


Motor Classifications

Direct Current (DC) Motors

Direct Current (DC) Motors are motors in which the rotor is activated by a steady current. The force causing the rotation in a DC motor is caused by the interaction of the rotor current with the stator's magnetic field. The speed of the motor's rotation is a function of the amount of current flowing through the stator.

Alternate Current (AC) Motors

Alternate Current (AC) Motors are motors in which a variable current flows through the stator. The current variations can be in a series of smooth sinusoidal cycles or can occur in abrupt digital transitions. Rotation of an AC motor is caused by sequencing the current cycles among the individual stator windings. Depending upon the material used to make the rotor, the rotor will be drawn toward an activated winding by either magnetic attraction or magnetic reluctance. The speed of an AC motor's rotation is dependent upon the speed in which the current changes are sequenced through the stator windings.

Synchronous Motors

Synchronous Motors are Alternating Current (AC) motors in which the rotor maintains the same frequency and phase as the rotating stator field.

Asynchronous Motors

Asynchronous Motors are Alternating Current (AC) motors designed such that the rotor movement is not synchronized with the moving stator field. An asynchronous motor's rotating stator field induces a current in the rotor windings. This induced current, in turn, generates a force, drawing the rotor toward the stator.

In an asynchronous motor, torque is only generated when the rotor is not in phase with the stator. If the rotor were to become aligned with the stator field, the torque would disappear, thus, causing the rotor to pause. The stator field basically pulls the rotor. This lag between the stator and the rotor is commonly referred to as a "slip."


 Learn More

© 2024 Microchip Technology, Inc.
Notice: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
Information contained on this site regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.